


















Figure 6. The CKX1 TM domain mediates the protein homooligomerization and ER retention. A, Structural model of the CKX1
TMdimer predicted byCATM. From left to right, ribbon representation of the entire TMhelix (front view) and detail of the interface
(side view). CATM predicts a well-packed interface mediated by the amino acids highlighted in the sequence. The SxxxG se-
quence pattern (marked in red) allows the backbones to come into close contact at the crossing point, enabling the formation of
networks of interhelical hydrogen bonds (dashed lines) between Ca-H donors and carbonyl oxygen acceptors. Additionally, an
interhelical hydrogen bond between the side chains of Arg-32 and Asn-34 also is observed. B and C, Confocal micros-
copy analysis of BiFC in N. benthamiana epidermal leaf cells reveals strongly reduced interaction between NVen-CKX1 and
CVen-CKX1 (C) in comparison with the interaction of NVen-CKX1 and CVen-CKX1 (B), as apparent from the reconstitution of the
Venus-derived fluorescence (yellow; top images). Comparable expression levels are apparent from the activity of the control gene
Golgi-mTq2 (cyan; bottom images). The microscopy was performed 2 d after infiltration (DAI). Identical confocal settings were
used to capture respective images in B and C. D, Confocal microscopy analysis of N. benthamiana leaf epidermal cells coex-
pressing CKX1-GFP (green) with the ERmarker RFP-p24 (magenta). Themicroscopywas performed 2DAI. Bars = 25mm (B andC)
and 5 mm (D).
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Along with the difference in this basic protein fea-
ture, different cellular behavior of the individual CKX
isoforms can be expected as, for example, different
sortingmechanisms for soluble andmembrane proteins
operate in the secretory pathway. Unlike for soluble
proteins, sorting of membrane proteins is additionally
determined bymotifs located in their cytosolic domains
and by the structure of the TM domain (Brandizzi et al.,
2002; Gao et al., 2014). It is well established that the
default destination for soluble proteins lacking positive
sorting information is the apoplast (Rojo and Denecke,
2008). Indeed, several CKX isoforms shown to be sol-
uble or having strongly predicted signal peptides have
been demonstrated to be secreted to the apoplast
(Houba-Hérin et al., 1999; Bilyeu et al., 2001; Galuszka
et al., 2005). These findings correlate with the fact that
all putative soluble CKX proteins lack obvious sorting
determinants, such as the (H/K)DEL ER retention sig-
nal. Thus, it appears that soluble CKX isoforms may
generally follow the default secretory route to the
apoplast. In contrast, CKX1, defined in this work as a
prototypic membrane-bound CKX isoform, localized
predominantly to the ER. CKX1 retention in the ER is
well consistent with its apparent modification by high-
Man N-glycans (Niemann et al., 2015). This finding is
highly relevant because recent reports have revealed
that AHK cytokinin sensor His kinases are localized
predominantly in the ER (Caesar et al., 2011; Lomin
et al., 2011; Wulfetange et al., 2011). Hence, CKX1, as an
authentic ER protein, presumably coincides with the
ER-localized AHK proteins and controls cytokinin
concentrations directly perceived by the hormone re-
ceptors in the ER lumen. This active control of the cy-
tokinin pool in the ER by CKX lends more support to
the functional relevance of cytokinin receptor-mediated
signaling from this cellular compartment.

Evidence regarding CKX1 localization beyond the ER
is ambiguous. For example, prolonged expression of
GFP-CKX1 caused, in addition to ER localization, the
accumulation of GFP signal in larger bodies that coin-
cide with ER-associated inclusions formed, for exam-
ple, upon the expression of MP-RFP (Sambade et al.,
2008). GFP-CKX1 signals in these structures, therefore,
may reflect changes in ER structure that can be caused
by strong, transient overexpression of an ER-resident
protein (Niehl et al., 2012; Supplemental Fig. S3A)
rather than by the normal cellular distribution of GFP-
CKX1. Additionally, in the case of the C-terminal
CKX1-GFP fusion, the predominant ER signal was ac-
companied by localization to very small puncta, which
often were positioned in direct proximity of pre-
vacuolar compartments/late endosomes labeled by
ARA6-mCherry. However, these showed only limited
colocalization. The identity of these CKX1-GFP-labeled
structures will require further clarification. Impor-
tantly, both analyzed CKX1 fusion proteins were not
detected in the vacuole. Together, the analysis does not
support our previous hypothesis that CKX1 might be
actively targeted to the lytic vacuole (Werner et al., 2003).
It is possible that the occasional vacuolar targeting

observed previously (Werner et al., 2003) was an
overexpression artifact due to saturated ER retention
capacity. CKX1-GFP escaping ER retention mecha-
nisms might passively reach the vacuole, which has
been discussed as the default compartment for some
membrane proteins (Barrieu and Chrispeels, 1999;
Langhans et al., 2008). Accordingly, although we
showed in this study that CKX1 is bound exclusively to
membrane, the CKX1-GFP signal reported by Werner
et al. (2003) did not label the tonoplast but the vacuolar
lumen, which indicates the formation of a soluble
degradation product. Taken together, there is currently
no clear experimental evidence supporting the function
of CKX proteins in the vacuole. However, we note that
cytokinin has been detected in vacuoles (Fusseder and
Ziegler, 1988; Kiran et al., 2012; Jiskrová et al., 2016), but
its biological significance in this organelle remains ob-
scure.

A surprising outcome of our study is that CKX1
forms homodimeric and oligomeric complexes in vivo.
Most interestingly, complex formation was mediated
mainly by a strong interaction between the TM do-
mains. Oligomerization of the TM helices of bitopic
membrane proteins can be important for the structural
assembly of stable protein complexes as well as play
functional roles when association or conformational
changes are critical for modulating signaling and reg-
ulation (Moore et al., 2008). Classic examples are the
receptor Tyr kinase and cytokine receptor families of
type I membrane proteins, for which dimerization and
structural rearrangement involving the TM region play
critical roles in activation (Li and Hristova, 2006;
Maruyama, 2015). For animal type II membrane pro-
teins, including several Golgi glycosyltransferases, it
was shown previously that protein oligomerization can
be determined by the luminal juxtamembrane region
and/or the TM-spanning region (Tu and Banfield,
2010).

A variety of physical forces have been implicated in
the promotion of TM helix interactions (Senes et al.,
2004; Li et al., 2012), from van der Waals packing
(MacKenzie et al., 1997) to hydrogen bonding between
polar amino acids (Choma et al., 2000; Zhou et al., 2000)
and aromatic p-p and cation-p interactions (Johnson
et al., 2007). A particularly important class of TM helix
interaction motifs is the GASright dimer, which is stabi-
lized by unusual networks of hydrogen bonds that are
formed by Ca-H donors and backbone carbonyl oxy-
gen acceptors on the opposite helix (Ca-H∙∙∙O=C
bonds; Senes et al., 2001). The signature sequence pat-
tern of GASright is the presence of small residues (Gly,
Ala, and Ser) arranged in motifs such as GxxxG or
variants thereof that facilitate close interhelical contact
and carbon-hydrogen bond formation between TM
helices (Mueller et al., 2014). The mutation and Co-IP
analyses presented in this work showed that the iden-
tified GxxxG-like motif (SxxxG) in the TM domain of
CKX1 is largely required for CKX1 homooligomeriza-
tion. Currently, little is known about GxxxG-mediated
protein-protein interactions and their functions in

2034 Plant Physiol. Vol. 176, 2018

Niemann et al.

 www.plantphysiol.orgon March 13, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.17.00925/DC1
http://www.plantphysiol.org


plants. A TM domain containing a GxxxG motif has
been reported to occur in many receptor-like kinases
and receptor-like proteins mediating plant immune
responses (Fritz-Laylin et al., 2005), but only two
studies have addressed the function of the GxxxGmotif
in protein-protein interactions and signaling responses
to pathogens (Zhang et al., 2010; Bi et al., 2016). In ad-
dition to dimerization, our SEC fractionations also
suggested higher order oligomerization of CKX1,
which is in accord with several previous reports de-
scribing the assembly of GxxxG dimers into higher
oligomeric complexes (Dews and MacKenzie, 2007;
Xu et al., 2007; Hoang et al., 2015; Kwon et al., 2015).
Although the underlying assembly mechanisms are
mostly unclear, they may involve TM domain interac-
tions as well as interfaces in the soluble domain.
It will be important to understand whether the de-

scribed protein features are conserved among CKX ho-
mologs. Our sequence analysis revealed only a related
AxxxAmotif (Gimpelev et al., 2004) in the TMdomain of
CKX6, indicating that the sequence of TMdomains is not
conserved and that the SxxxG motif is unique to CKX1.
However, given that TMdomains do not need to contain
specific sequence motifs to oligomerize (Moore et al.,
2008), it is currently not possible to conclude whether
oligomerization is a shared mechanism in the CKX

family, and individual proteins will need to be analyzed
experimentally in the future.

Ultimately, it is important to understand the signif-
icance of CKX1 homooligomerization for its cellular
activity. One possibility is that the CKX1 oligomeric
state and its enzymatic activity would be coupled.
Examples of such a structure-activity relation for type
II membrane proteins are known (Chung et al., 2010;
Tu and Banfield, 2010). However, heterologous ex-
pression of a chimeric CKX1 protein with the N ter-
minus replaced by a cleavable yeast secretion signal
yielded a relatively high enzyme activity prepara-
tion (Kowalska et al., 2010), suggesting that the
TM-mediated oligomerization may not be required for
CKX1 enzyme activity per se. Further experiments are
still needed to test this possibility more rigorously. In
contrast, our analysis demonstrated that mutations
rendering CKX1 monomeric cause (1) a loss of its ER
localization, resulting in an unspecified cellular redis-
tribution, and (2) a reduction of its overall cellular
levels. The first suggests that the CKX1 oligomerization
status may represent an important determinant for its
ER retention and, consequently, for the cytokinin con-
centration and signaling activity in the ER. ER retention
mechanisms based on TM-mediated protein dimeriza-
tion were proposed earlier (e.g. for the type II TM

Figure 7. TM-mediated CKX1 homooligomerization regulates protein stability. A, Shoot phenotypes of the soil-grown wild-type control and plants
expressing 35S:CKX1-GFP (line 1) and 35S:CKX1-GFP (line 14) 4 weeks after germination. Homozygous T4 plants are shown. Bar = 1 cm. B, Rosette
diameters of the plants shown in A. Values are means6 SD (n$ 5). C and D, Comparison of the CKX1 transcript levels (C) and the protein abundances
(D) in shoots of the 35:CKX1-GFP and 35:CKX1-GFP plants shown in A. Transcript levels were determined by quantitative real-time PCR. Means6 SD

(n = 4) are shown in C. For the protein abundance analysis, 50 mg of the crude protein extracts was analyzed by immunoblot using anti-GFPantibody.
Coomassie Blue staining of Rubisco large subunit (RbcL) was used as a loading control in D. E, Total cytokinin (CK) contents of the 3-week-old plants
shown in A. Means 6 SD (n = 3) are shown. FW, Fresh weight. F, Analysis of the effects of the ERAD inhibitors EerI and Kif, and of the proteasome
inhibitor MG132, on CKX1-GFPand CKX1-GFP protein abundances. Arabidopsis seedlings grown in liquid cultures for 7 d were treated for 24 h with
50 mM Kif or 20 mM EerI and for 9 h with 100 mM MG132. Proteins were analyzed as described in D. In B, C, and E, different letters indicate statistically
significant differences (Student’s t test, P , 0.05).
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chaperone COSMS; Sun et al., 2011). It should be noted,
however, that the ER residency of membrane proteins
often can be determined by the combined activity of
different retention and retrieval signals (Boulaflous
et al., 2009). Therefore, it will be interesting to analyze
whether the ER localization of CKX1 is eventually
controlled by additional sorting signals (Cosson et al.,
2013; Gao et al., 2014). Second, our analysis demon-
strated that plants expressing the monomeric CKX1
mutant variant accumulated the protein to levels con-
siderably lower than those detected in plants express-
ing the wild-type form. The reduced protein levels were
correlated with the lack of a prominent cytokinin defi-
ciency phenotype in the respective transgenic lines,
suggesting that the capacity of the mutant protein to
regulate the cytokinin concentration in the ER was
impaired. Less severe reduction of endogenous cyto-
kinin levels in 35S:CKX1-GFP-expressing lines corrob-
orated this conclusion. It is interesting that the
cytokinin levels in these lines were still significantly
lower in comparison with the wild type, which is in line
with the notion that the cytokinin signal must be re-
duced below a certain threshold to trigger strong
growth alterations (Werner et al., 2010).

We have recently shown that CKX1 as well as ap-
parently other CKX isoforms targeted to the secretory
pathway are regulated by the proteasome-dependent
ERAD pathway (Niemann et al., 2015), which repre-
sents a conserved cellular route to withdraw proteins
from the ER that fail to attain their native conformation
(Römisch, 2005). Therefore, it is conceivable that the
unassembled monomeric CKX1 is prone to increased
degradation by ERAD. Consistent with this hypothesis,
the CKX1-GFP protein levels were significantly re-
stored by treatments with ERAD inhibitors, indicating
that CKX1 oligomerization is a crucial parameter de-
termining its ERAD and, hence, the protein abundance
in the ER. The exact mechanisms underlying ERAD of
CKX1 and other CKX proteins are currently unknown;
however, it can be hypothesized that the assembly of
individual subunits into multimeric complexes can
enhance protein folding or conformational stability,
which can prevent proteolytic degradation (Vembar
and Brodsky, 2008). Although it needs to be studied in
more detail, it is interesting that CKX1-GFP levels were
not fully rescued by the ERAD inhibition, suggesting
that, eventually, other mechanisms may be involved in
CKX1 removal from the ER as well.

It should be further noted that detailed genetic studies
will be required in the future to complement the data
presented here and to identify biological processes in-
volving the molecular mechanisms described in this
work.

MATERIALS AND METHODS

Plasmid Construction

The 35S:myc-CKX1 construct was described previously (Niemann et al.,
2015). To generate 35S:GFP-CKX1, the CKX1 cDNA from pDONR221-CKX1

(Niemann et al., 2015) was subcloned into pK7WGF2 (Karimi et al., 2002) by
Gateway LR recombination (Invitrogen). For 35S:CKX1-GFP, the CKX1 cDNA
was PCR amplified in two steps by using primer pairs 1/2 and 3/4
(Supplemental Table S1), and the final amplicon was cloned into the vector
pDONR221 (Invitrogen) and subsequently pK7FWG2 (Karimi et al., 2002). The
CKX11-79-GFP fusion gene was created by overlapping PCR. In the first step, the
CKX1 fragment and GFP-coding sequence were amplified by using primer
pairs 3/5 and 6/7 and pDONR221-CKX1 and pK7WGF2 as templates, re-
spectively. These two fragments were combined and amplified with primers
3 and 4, and the final amplicon was cloned successively in pDONR221 and
pK7FWG2 to generate 35S:CKX11-79-GFP. The CKX1-GFP construct was gen-
erated by site-directed mutagenesis (Eurofins Genomics).

For protein-protein interaction by BiFC, theCKX1 cDNAwas PCR amplified
using primer pairs 8/9 and 10/11, and the resulting fragments were cloned into
pJet vector. First, CKX1 cDNA was subcloned into the MCS1 BamHI site of
pDOE-08 (Gookin and Assmann, 2014), resulting in pDOE-08-CKX1 parent
vector expressing CKX1 N-terminally tagged with the N-terminal fragment of
monomeric Venus split at residue 210 (NVen-CKX1) and unfused C-terminal
Venus fragment (CVen). This vector was used as a negative control. In the next
step, the second CKX1 cDNA fragment was subcloned into the KflI site within
MCS3 of the pDOE-08-CKX1 parent vector, resulting in vector expressing
NVen-CKX1/CVen-CKX1 used for the homodimerization test. Mutated full-
length CKX1 cDNA was used in a similar cloning approach to generate the
vector encoding NVen-CKX1/CVen-CKX1.

Single-copy transgenic Arabidopsis (Arabidopsis thaliana) lines harboring
35S:CKX1-GFP and 35S:CKX1-GFP were used in this study.

Transient Expression in Nicotiana benthamiana and
Confocal Laser Scanning Microscopy

Infiltration was performed as described previously (Sparkes et al., 2006;
Niemann et al., 2015) using Agrobacterium tumefaciens strain GV3101:pMP90
and 6-week-old N. benthamiana plants. For coexpression, the A. tumefaciens
cultures harboring different expression constructs were mixed in infiltration
medium to a final OD600 of 0.1 for the CKX1 fusions and 0.01 to 0.05 for the
marker constructs. 35S:p19 was included in all infiltrations at OD600 = 0.1. The
following binary constructs were used in this work: pH7MP:RFP (Boutant et al.,
2010), RFP-p24 (Lerich et al., 2011), ERD2-YFP (Brandizzi et al., 2002), YFP-
Sec24 (Stefano et al., 2006), mCherry-SYP61 (Gu and Innes, 2011), and ARA6-
mCherry (Gu and Innes, 2012). Confocal imaging analysis was performed using
a Leica TCS SP5 laser scanning confocal microscope 1 to 3 d after infiltration.
mTq2, GFP, YFP, RFP, and mCherry were excited at 458, 488, 514, and 561 nm,
and the fluorescence emissions were detected at 461 to 488, 498 to 538, 520 to
556, 600 to 630, and 590 to 640 nm, respectively. In cases where GFP and YFP
were analyzed simultaneously, GFP and YFP were detected at 490 to 507 and
557 to 585 nm, respectively.

Preparation of Microsomal Membranes and Membrane
Association Analysis

N. benthamiana leaves (1 g) were homogenized in 5 mL of homogenization
buffer (25 mM Tris-HCl, pH 7.5, 300 mM Suc, 1 mM EDTA, 1 mM 1,4-dithioery-
thritol, and complete protease inhibitor cocktail without EDTA [Roche]) using a
mortar and pestle. The homogenate was passed through one layer of Miracloth
(Calbiochem) and centrifuged at 10,000g for 10 min at 4°C to remove the debris.
The microsomal membrane fraction was pelleted by ultracentrifugation at
100,000g for 90min at 4°C. Pellets were resuspended in 5mL of homogenization
buffer or homogenization buffer supplemented with 1 M NaCl, 2 M urea, 0.1 M

Na2CO3, pH 11, or 1% Triton X-100.
For the protease digestion assay, the microsomal membranes were isolated

from rosettes of 14-d-old soil-grown Arabidopsis plants expressing 35S:myc-
CKX1 (Niemann et al., 2015) and 35S:CKX1-myc. The 100,000g pellet was
resuspended in proteinase inhibitor-free homogenization buffer and incubated
with 10mgmL21 proteinase K at room temperature for 45min in the presence or
absence of 1% Triton X-100. A concentration of 6 mM phenylmethanesulfonyl
fluoride (Sigma-Aldrich) was used to terminate the protease digestions. After
15 min of incubation on ice, the membranes were solubilized with 23 SDS-
PAGE sample buffer (125 mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 10%
b-mercaptoethanol, and 0.01% Bromphenol Blue).

Protein samples were resolved by SDS-PAGE and blotted on PVDF mem-
branes (Millipore). Membranes were blocked with 5% skim milk in PBS con-
taining 0.1% Tween 20. A mouse monoclonal anti-myc antibody (clone 4A6;
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Millipore; dilution 1:1,000) followed by a goat anti-mouse antibody
coupled to horseradish peroxidase (sc-2005; Santa-Cruz; dilution 1:2,000)
were used to detect myc-CKX1. For immunodetection of Arabidopsis
calnexins, the blots were stripped (23 10 min; 1.5% Gly, 0.1% SDS, and 1%
Tween 20, pH 2.2) and reprobed by using anti-CNX1/2 antibody (Agri-
sera; dilution 1:10,000) and horseradish peroxidase-conjugated goat anti-
rabbit antibody (Calbiochem; dilution 1:2,000). Bound antibodies were
visualized with SuperSignal West Pico chemiluminescent substrate
(Thermo Scientific).

Co-IP Assays

GFP and myc fusion proteins were coexpressed in N. benthamiana leaves,
which were ground in liquid nitrogen and homogenized in extraction buffer
(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.3% Triton X-100, 0.2% Igepal, 1 mM

phenylmethanesulfonyl fluoride, and complete protease inhibitor cocktail
[Roche]). Samples were cleared by 10 min of centrifugation at 4°C and
6,000g. Supernatants (1.4 mL) were adjusted to 2.8 mg mL21 protein and
incubated with 20 mL of GFP-Trap-A beads (Chromotek) for 3 to 4 h at 4°C.
Beads were washed five times with the extraction buffer, mixed with 20 mL
of 23 SDS-PAGE sample buffer, incubated for 5 min at 95°C, and cleared by
centrifugation. The proteins were subjected to SDS-PAGE and immunoblot
analysis using anti-myc or anti-GFP antibody (clone JL-8; Clontech; dilution
1:2,500).

SEC

Microsomalmembraneswere isolated according to the protocol byAbas and
Luschnig (2010). Briefly, N. benthamiana leaves were homogenized in 1 volume
of extraction buffer (100 mM Tris-HCl, pH 7.5, 300 mM NaCl, 25% Suc, and 5%
glycerol). The homogenate was kept on ice for 20 min and centrifuged at 600g
for 3 min. After an additional 20 min of incubation on ice, the supernatant was
diluted with 1 volume of water, divided into 200-mL aliquots in 1.5-mL tubes,
and centrifuged at 16,000g for 2.5 h. The membranes from 7 g of leaves were
solubilized in 1 volume of buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 20%
glycerol, 15mMb-mercaptoethanol, and 1%DDM) overnight at 4°C.Membrane
proteins were concentrated using Amicon Ultra-15 centrifugal filter units
(50-kD cutoff; Millipore). The whole protein extract was loaded on the HiLoad
16/60 Superdex 200 column (GEHealthcare) equilibratedwith at least 3 column
volumes of running buffer (50mMTris-HCl, pH 7.5, 150mMNaCl, 10% glycerol,
and 0.05% DDM). Chromatography was performed with the ÄKTA FPLC
system (GE Healthcare) at a flow rate of 1 mL min21. Elution fractions of 1 mL
were collected and subjected to SDS-PAGE followed by western blotting and
immunodetection. The Superdex 200 column was calibrated using the follow-
ing proteins as standards: BSA trimer (201 kD), BSA dimer (132 kD), BSA
monomer (67 kD), and ovalbumin (43 kD).

RNA Extraction, cDNA Synthesis, and Quantitative PCR

RNA extraction from shoots of single plants, cDNA synthesis, and quanti-
tative PCR were done as described before using UBC10 for normalization
(Niemann et al., 2015). The primers used for CKX1 amplification in the quan-
titative PCR were CKX1-fw (59-ATGGATCAGGAAACTGGCAA-39) and
CKX1-rev (59-AGATGAAAACAAAGTGGATGGAA-39).

Treatments with ERAD Inhibitors

Seedlingswere grown in liquid cultures for 7 d followed by 24 h of treatment
with 50 mM Kif dissolved in water, 20 mM EerI dissolved in DMSO, and the
respective mocks. A total of 50 mg of protein extracts was analyzed by immu-
noblot analysis using anti-GFP antibody as described above. Loading was
verified by Coomassie Blue staining after immunoblot detection according to
Welinder and Ekblad (2011).

Determination of Cytokinin Content

The cytokinin content in shoots of 3-week-old soil-grown plants was de-
termined by ultra-performance liquid chromatography-electrospray-tandem
mass spectrometry as described by Sva�cinová et al. (2012), including modifi-
cations described by Antoniadi et al. (2015).

Computational Modeling

The structure of CKX1-TM was predicted from its sequence (11-
RQNNKTFLGIFMILVLSCIAGRTNLCS-37) using CATM (Mueller et al., 2014).
Side chain mobility was modeled using the energy-based conformer library
applied at the 95% level (Subramaniam and Senes, 2012). Energies were de-
termined using the CHARMM 22 van der Waals function (MacKerell et al.,
1998) and the hydrogen bonding function of SCWRL 4 (Krivov et al., 2009), as
implemented in MSL (Kulp et al., 2012), with the following parameters for Ca
donors, as reported previously: B = 60.278; D0 = 2.3 Å; sd = 1.202 Å; amax = 74°;
and bmax = 98° (Mueller et al., 2014). The relative energy of the Ser-27Ile, Gly-
31Ile mutant was calculated as

DEmut ¼
�
Emut;dimer 2Emut;monomer

�
2
�
EWT;dimer 2EWT;monomer

�

where EWT,dimer and Emut,dimer are the energies of the wild-type and mutant se-
quences, respectively, in the dimeric state and EWT,monomer and Emut,monomer are the
energies of the wild-type and mutant sequences, respectively, in a side chain-
optimized monomeric state with the same sequence.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession number At2G41510 (CKX1).
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Supplemental Figure S1. Co-IP detection of CKX1 oligomerization.

Supplemental Figure S2. SEC analysis of CKX1 complex formation.

Supplemental Figure S3. Strong overexpression of GFP-CKX1 alters the
ER morphology.

Supplemental Figure S4. Co-IP detection of homooligomerization medi-
ated by the CKX11-79 N-terminal fragment.

Supplemental Figure S5. CKX1-TM-GFP is N-glycosylated and membrane
associated.

Supplemental Figure S6. Structural model of the Ser-27Ile, Gly-31Ile dou-
ble mutant of CKX1.

Supplemental Figure S7. Growth and molecular phenotypes of Arabidop-
sis plants expressing 35S:CKX1-GFP and 35S:CKX1-TM-GFP.

Supplemental Table S1. Oligonucleotides used in this study.
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